

Chado Controller
User Manual

V1.0.0

Chado Controller User Manual v1.0.0

 2

The Chado Controller package and all associated files are copyright (c) 2008 CIRAD,
Montpellier, France.

The Chado Controller package is distributed under the "Artistic License 2.0".

Chado Controller User Manual v1.0.0

 3

Preface

The Chado Controller is a middleware that wraps a Chado Database to improve its
possibilities. It enables access restriction to Chado data, verifies annotator work and keeps
track of modifications made to the database.

This user manual targets annotators that use Artemis genome editor but also people using
GBrowse genome browser. It describes how the Chado Controller is integrated to these tools
and how to take advantage of it.

Chado Controller User Manual v1.0.0

 4

Table of content
Chado Controller User Manual .. 1

Preface.. 3
Table of content.. 4
Basics ... 5
Access Restriction Module... 5

Logging in and logging out .. 5
Annotation Inspector .. 5
Annotation History... 11
Troubleshooting ... 12
Frequently Asked Questions .. 13
Contacts.. 14
Glossary.. 15

Chado Controller User Manual v1.0.0

 5

Basics
The Chado Controller is a middleware mainly embedded in a Chado Database. It is composed
of 3 main parts:

1) the Access Restriction module;
2) the Annotation Inspector;
3) the Annotation History module;

Access Restriction Module
The Access Restriction module manages the access to any feature of the database
(chromosome, contig, gene, mRNA, protein, regions,…).

Logging in and logging out
When using GBrowse, users may have to login in order to access to protected features. To log
in, there should be a box on the top of GBrowse labelled ‘User Account’ with 2 fields:
‘Login’ and ‘Password’. Simply enter your login and password and click on the button
‘Login’. The page should be reloaded and a display the message ‘Welcome <your login>!’ if
you logged in successfully.
Once logged in, you can change your password using the link ‘Change password...’ which
displays two fields, one for the new password and a second one to type the new password
again to ensure there are no mistyping. Then, the ‘change password’ button will proceed to
the password update.
Be careful, after login, you have to have to update image in the GBrowse page to see all
protected tracks (Frequently Asked Questions p. 13).
With Artemis, the user just has to log into the Chado database using the regular Artemis login
box and the Access Restriction module will manage his/her access rights automatically. New
created feature will be given the same access right of the object they are located on (ie.
through Chado featureloc table).

When using front-end programs to PostgreSQL such as ‘psql’ command line program, you
should manually initialize the Access Restriction module using the SQL command:
“SELECT init_access();”
If you don’t do so, your first query using the feature table will be slower than expected as the
Access Restriction module will proceed to a self-initialization and treat your query in a non-
optimized way.

Annotation Inspector
The Annotation Inspector helps annotators to produce consistent annotations. It is based on
controlled vocabularies (CV). CV owned by the Chado Controller are prefixed by ‘CC_’. The
CC cvterms are available through the CV tab of Artemis feature builder or at
http://www.gnpannot.org/sites/gnpannot.org/files/chado_controller_1.6.0.tgz
The Annotation Inspector automates some annotation tasks so the annotator doesn’t have to
handle these anymore such as:

- add new feature to the manual annotation track (update feature_dbxref source as
source and type are required by GBrowse);

- change the color feature property of annotated features according to their annotation
status (colours are selected by the administrator at installation time);

Chado Controller User Manual v1.0.0

 6

- set the owner property of a gene to current user;
- add relationship entries between sub-elements of a transposable element.

The Annotation Inspector can also be called to check the consistency of an annotation. When
integrated to Artemis, the Annotation Inspector is automatically called when the annotator
uses the ‘Commit’ button. Then, it performs its checks and either just commits if everything
was fine or displays a dialog box reporting encountered issues. When issues are detected, the
annotator can commit his/her changes anyway or cancel to fix the problems. If the Annotation
Inspector is told to commit while issues were reported, it will add properties to the annotated
element indicating which issues were detected.

When using front-end programs to PostgreSQL such as ‘psql’ command line program, the
Annotation Inspector can be called manually.
To check the whole database for annotation issues, you can use the SQL command:
“SELECT * FROM validate_annotations(0, FALSE);”
To start a new manual annotation and check it for issues do the following queries:
“SELECT start_new_transaction_group();”
Then, note the returned value which is the transaction group identifier that will be used later
on.
“START TRANSACTION;”
Do your annotation SQL queries.
“SELECT, INSERT, UPDATE, DELETE,…”
Once done, to check your work, do:
“SELECT * FROM validate_annotations(<identifier>, FALSE);”
where “<identifier>” is the transaction group identifier you got earlier. That call will return 2
fields: a filed ‘validation’ which is set to 0 if no issue has been encountered and a field
‘validation_message’ containing encountered issues description. Then you have 3 choices:

- you can just ignore the Annotation Inspector results and commit:
“COMMIT;”

- you may want to commit but keep track of what was wrong:
“SELECT * FROM validate_annotations(<identifier>, TRUE);
COMMIT;”

- or cancel all your changes:
“ROLLBACK;”.

To check an older annotation, you need administrator access right to get the annotation
transaction identifier of the annotation. This identifier can be found in the ‘*_audit’ tables
(Annotation History p. 11). Typically, a query to retrieve such an identifier looks like this:
“SELECT transaction_group FROM <table>_audit WHERE <come condition to identify the
annotation> GROUP BY transaction_group, transaction_date ORDER BY transaction_date
DESC;”
For instance, to retrieve annotations made on a feature between September the 1st and
September the 2nd:
“SELECT transaction_group FROM feature_audit WHERE ‘2011-09-01 00:00:00’ <
transaction_date AND transaction_date < ‘2011-09-02 23:59:59’ GROUP BY
transaction_group, transaction_date ORDER BY transaction_date DESC;”

The checks performed by a standard installation of the Annotation Inspector and its behavior
when ‘validate_annotations’ is called with ‘TRUE’ as second argument are listed in Table 1.
Note: each one of the above functions can be called the same way ‘validate_annotations’ is.

Table 1. Annotation rules of the Chado Controller manual annotation tracking module.
Functions called by the validate_annotations function: auto-fill triggers, check and manage procedures.
*admin account: includes both administrator and database loading accounts

Function Annotation Inspector Rule Default behavior
Auto-owner Set owner to current user for new polypeptide or repeat region except when using admin

account*
handled by triggers

 Set owner to current user on polypeptide or repeat region when a qualifier is added or modified
except when using admin account*

handled by triggers

 Set owner to current user on polypeptide or repeat region when a gene element position or a CV
term or a feature dbxref is added or modified except when using admin account*

handled by triggers

Auto-manual Curation Add any modified features to manual curation track (feature_dbxref relationship) handled by triggers
Auto-Color Set color of related features of gene or repeat region to the color choosen at Chado Controller

installation time when a gene related or a repeat region related feature is modified
handled by triggers

Auto-TE Relationship Insert missing feature_relationship entries between repeat region related features when any of
them is modified

handled by triggers

Chado Controller User Manual v1.0.0

 8

Function Annotation Inspector Rule Default behavior Commit behavior

check_gene_structure Check if the obsolete status of an element is
consistent with its associated elements

for non-obsolete gene:
- report missing non-obsolete mRNA
- report missing non-obsolete polypeptide
- report missing non-obsolete exon
- make sure gene name is shared between gene elements
- report last stop codon shared between at least 2 different non-
obsolete genes

add /redundant_gene qualifier
if a stop codon is shared
between at least 2 genes,
otherwise, remove
/redundant_gene qualifier

 for obsolete gene:
- report non-obsolete mRNA
- report non-obsolete polypeptide
- report non-obsolete exon

 for deleted gene:
- report non-deleted mRNA
- report non-deleted polypeptide
- report non-deleted exon

 for non-obsolete mRNA:
- report missing non-obsolete gene
- report missing non-obsolete polypeptide
- report missing non-obsolete exon

 for obsolete mRNA:
- report non-obsolete gene
- report non-obsolete polypeptide
- report non-obsolete exon

 for deleted mRNA:
- report non-deleted gene
- report non-deleted polypeptide
- report non-deleted exon

Chado Controller User Manual v1.0.0

 9

Function Default behavior Commit behavior

check_start_stop_codons report invalid start or stop codon add "missing_start_codon" CV term for invalid start codon
add "missing_stop_codon" CV term for invalid stop codon

check_sequence report sequence length which are not a multiple of 3
add "peptide" CV term if polypeptide lenght is below 60bp
report any stop codon found inside the coding sequence

add "not_3-multiple" CV term if sequence length is not a multiple
of 3
add "peptide" CV term if polypeptide lenght is below 60bp
add "stop_in_frame" CV term if only one stop codon has been
found inside the coding sequence
add "multiple_stop_in_frame" CV term if more than a stop codon
has been found inside the coding sequence
remove "stop_in_frame" and "multiple_stop_in_frame" if no stop
codon has been found inside coding sequence

check_introns report negative intron length
report unrecognized intron donor site (non-GT)
report unrecognized intron acceptor site (non-AG)

add "negative_intron_length" CV term when negative intron
length detected
add "missing_donor" CV term when an unrecognized intron
donor site (non-GT) is found
add "missing_acceptor" CV term when an unrecognized intron
acceptor site (non-AG) is found

manage_evidence add "curated" CV term when a feature is modified same behavior
manage_note auto-set note qualifier content to something like:

"name~ product~ gene~ completeness" for genes or "rpt_class~
rpt_order~ rpt_superfamily~ rpt_family~ name~ rpt_type~ completeness"
and fill "/mobile_element" qualifier for repeat regions or "satellite~ name"
and fill "/satellite" qualifier for satellites

same behavior

manage_transposable_element_gene add "/transposable_element_gene" qualifier set to 1 for genes inside a
repeat region or a transposon or if the gene has one of the detected
keyword in its "product" qualifier or if the gene ha a detected IPR code as
dbxref
if the "/transposable_element_gene" has already been set, its value
remains unchanged (even if it is set to 0)

same behavior

manage_mandatory_properties report missing "product" qualifier
report missing "/functional_completeness" qualifier
report missing "/status" qualifier
report missing "/evidence" qualifier
report missing or not set "/inference" qualifier

same behavior

Chado Controller User Manual v1.0.0

 10

Function Annotation Inspector Rule Default behavior Commit behavior

Report inconsistency between gene qualifiers and the selected
evidence code

report missing or invalid "evidence_code" CV term same behavior
manage_evi
dence_code
_coherence Check consistency of "evidence_code" set to "IC1" Similarity with a

polypeptide whose function has been experimentally demonstrated in
the studied organism OR in the same genus (product is the validated
function of the cognate polypeptide)

report missing "product", "GO terms" CV terms or "Dbxref" PMID

Check consistency of "evidence_code" set to "IC2" or "IC2a" High
similarity with a polypeptide of validated function (product is the
validated function of the ortholog)

report missing "product", "GO terms" CV terms or "Dbxref" PMID

Check consistency of "evidence_code" set to "IC2b" High similarity
with a polypeptide of known function (product is the known function of
the ortholog)

report missing "product" or "GO terms" CV terms

Check consistency of "evidence_code" set to "IC3" Similarity with
Swissprot/TrEMBL polypeptide or InterPro family (product is the
putative function of the homolog)

report unwanted "gene" (synonym) CV term
warn if "product" does not contain "putative" keyword
report missing "GO terms"

Check consistency of "evidence_code" set to "IC4" Similarity with
polypeptide of unknown function or interspecies EST (product is
conserved hypothetical protein)

report unwanted "gene" (synonym) or "ec_number" CV terms
warn if "product" does not contain "conserved hypothetical protein"
keywords
warn if there is not just one "GO terms" set to "molecular function"

Check consistency of "evidence_code" set to "IC5" No significant
blast hit (product is hypothetical protein)

report unwanted "gene" (synonym) or "ec_number" CV terms
warn if "product" does not contain "hypothetical protein" keywords
warn if there is not just one "GO terms" set to "molecular function"
warn if there are "Dbxref" PMID

Check consistency of "evidence_code" set to "IC6" No significant
functionnal prediction, short coding sequence and/or low coding
probability (product is doubtful protein)

report unwanted "gene" (synonym) or "ec_number" CV terms
warn if "product" does not contain "hypothetical protein" keywords
warn if there is not just one "GO terms" set to "molecular function"
warn if there are "Dbxref" PMID

Check consistency of "evidence_code" set to "IC7" Very partial match
and strong anomalies of the gene structure (product is remant gene
symbol)

report unwanted "gene" (synonym) or "ec_number" CV terms
warn if there is not just one "product"
warn if the "product" contains "hypothetical" or "putative" keywords
warn if there is not just one "GO terms" set to "molecular function"
warn if there are "Dbxref" PMID

Annotation History
The Annotation History module keeps track of every insertion, update or deletion made on
Chado tables. Annotation history includes the login of the user who performed the changes
and the date of the operation. Moreover, changes are grouped into transaction groups and their
order is recorded. When a transaction group identifier is positive, it means changes were made
without calling the function ‘start_new_transaction_group()’. On the opposite, if the identifier
is negative, it means that ‘start_new_transaction_group()’ has been called. So you can easily
differentiate what was done with a Chado Controller compliant soft such as Artemis.

The history of a gene or a transposable element can be accessed from GBrowse using the
script:
http://<your GBrowse site>/cgi-bin/ gbrowse_history/<your Chado instance>?name=<your
gene>
Where “<your GBrowse site>” is the name of the server hosting your GBrowse, “<your
Chado instance>” is the name of the Chado instance you use and “<your gene>” is the name
of the gene of interest.
Note: you can also get the URL of the history page of a feature by replacing
“gbrowse_details” with “gbrowse_history” if you have the GBrowse details page URL.
Example:
http://gnpannot.cirad.fr/cgi-bin/gbrowse_history/musa?name=MaC088K20_g300
Login: guest, password: guest

GBrowse history page can display 2 kinds of reports: one for gene (or polypeptides) features
and one for other kinds of features.
For genes, only the history of the following properties will be displayed (while the history of
other properties is also in database):

• Feature fields (feature table): locus_tag (name), length (seqlen)
• Feature properties (featureprop table): owner, note, inference, annotator_comment
• Feature controlled vocabulary terms (feature_cvtem table): product, functional

completeness, gene, EC_number
• Feature database cross-references (feature_dbxref table): PMID

For other features, displayed properties are: owner, note, comment, annotator_comment,
inference, length, Functional Completeness, Evidence Code, Gene, locus_tag and PMID.

Note: only the available properties will be displayed.

The annotation history page displays group of transactions in colored blocks with the date and
the author of the changes for each group of transaction. Group of transaction are stored by
date, the most recent being the first block displayed. Properties that have been changed during
a transaction group are displayed in bold. When multiple changes occur on a same property, a
plus sign ([+]) is displayed to show all the changes made.

Currently, it is not possible to restore an old annotation. If you want to do so, you will have to
copy the old annotation and paste it on your annotation editor.

Chado Controller User Manual v1.0.0

 12

Troubleshooting
1) I can’t log in!
Make sure you use the appropriate login and password and “Caps Lock” on your keyboard is
not turned on. If you are really sure your password is correct, see with your administrator.
He/she can have access to log files that could provide additional information on the source of
the problem.

2) I can login with GBrowse but not with Artemis!
The Chado Controller can not use PostgreSQL account passwords to authenticate users.
Therefore, it is possible that the password of the Chado account is desynchronized with the
password of the PostgreSQL account. If you change your password using the GBrowse
interface, it might help to resynchronize your passwords. If the problem remains, see with
your administrator.

3) I can’t access to the tracks I’m supposed to!
First, make sure you are logged in using the appropriate account. Then, make sure your
administrator granted you the appropriate rights on the tracks.

Chado Controller User Manual v1.0.0

 13

Frequently Asked Questions
1) How do I know if I’m logged in using a specific login?
On GBrowse, the Access Restriction module adds a small area (box) entitled “User Account”.
In that area, if you’re logged in, there will be a button starting with “Logout” followed by the
name of the user account you are currently using.

2) Why do I have to reload GBrowse page after login to see all protected tracks?
Your administrator may hide tracks to anonymous users using GBrowse config.
Unfortunately, for technical reasons, when you log in, GBrowse needs to process the config to
know how to authenticate you. At the time it reads the config, you are not authenticated yet,
and the tracks to be hidden to anonymous users remain hidden to you. Then the page loads
and you become authenticated. You have to reload the page in order to let GBrowse reload its
config and display the hidden tracks.

3) Some checks made by the Annotation Inspector are not relevant. Can I disable them?
To disable some checks made by the Annotation Inspector, you have to ask your
administrator to do so. The Annotation Inspector calls functions that can be disabled by the
administrator through the table ‘annotation_inspector_procedures’.
Note that checks can not be disabled for a specific user: any change will be applied to all
users.

Chado Controller User Manual v1.0.0

 14

Contacts
valentin.guignon@cirad.fr
stephanie.sidibe-bocs@cirad.fr

Chado Controller User Manual v1.0.0

 15

Glossary

Annotation History: it is a module of the Chado Controller package which records every
modification made on data. It is composed of PostgreSQL scripts embedded in the database
and some parts of interface in GBrowse to display the annotation history. The annotation
history module is based on a modified version of the Chado Audit module to extend its initial
possibilities.

Annotation Inspector: it is a module of the Chado Controller which automates some
annotation tasks and can be used to check the consistency of annotations. It is composed of
PostgreSQL scripts embedded in the database and some parts of interface in Artemis to
display inspector messages. It is based on controlled vocabularies (CV).

Access Restriction: it is a module of the Chado Controller which enables access control to
features of a Chado Database. It is composed of PostgreSQL scripts embedded in the database
and some parts of interface in GBrowse or Artemis for initialisation of the module or user
login.

Chado: Chado is a relational database schema that underlies many GMOD installations. It is
capable of representing many of the general classes of data frequently encountered in modern
biology such as sequence, sequence comparisons, phenotypes, genotypes, ontologies,
publications, and phylogeny.

Chado Controller: it is a middleware between a Chado database and user interfaces that use
it. It is composed of 3 main modules: Access Restriction module, Annotation Inspector
module and Annotation History module.

Controlled Vocabulary: a controlled vocabulary is a list of terms grouped under a vocabulary
name. It helps the annotator to find the allowed terms and prevents the creation of duplicate
terms often due to typo (e.g. product, gene symbol, EC number, functional completeness,
structural completeness, status, evidence, evidence code).

PostgreSQL: it is the relational database management system that handles Chado databases.

