Chado Controller
Technical
Documentation

V1.0.0
2011-11-30

The Chado Controller package and all associated ite copyright (c) 2008 CIRAD,
Montpellier, France.

The Chado Controller package is distributed unklerArtistic License 2.0.

Preface

This technical documentation describes how areemphted the different parts of the Chado
Controller. To understand the documentation, yadrtae specific skills:

- SQL and SQLTemplate language;

- Notion of PostgreSQL;

- PERL;

- HTML with notions of sessions and cookies.

Table of content

Chado Controller Technical DOCUMENTATION. ... ccammmm i 1
o 1= = T = PP 3
BIE= 1] (=30) o0] (=T o | PSS 4
2 T [0 USRS 5
Access Restriction MOAUIE..............oi i e 5

Chado Schema MOdIfICAtIONSvet e eeeeeeesiiies s s e e e e e e eeeeeeeeeeeeeeeneeeeeenrnnes 5
Account Management CONSIAEratioNS ... eeeeeeerrimmmnniineee e e e eeeeeeeeeeeeeeeee 7
Optimizations and BENaAVIOUiiiiiiiiie e e e e e e e e ee e e e e 8
(@0] g g o =11 o 11147201 (o o [PPSR 11
ACCESS IBVEL ... e 12
L =T oo = ISP 13
ANNOLALION INSPECION ...ttt e ettt r e e e e e e e e e aaaaeeaeeeeeaeeeeeeeneenes 13
1Y/ T L8| F= U PP 13
Validation PrOCEAUIESuueieiiieie e e e e et e b bennaneseebnn s 13
F N gL aTo] =[0I o 111 (o Y2 15
Contacts

Basics

The Chado Controller (CC) is made of a set of SQhcfions, triggers, views and rules, all

embedded in a Chado database. This set is a |lay@eén Chado data and client software
(Figure 1). Each of the 3 modules of the CC haswa specificities. The Access Restriction

module uses views and rules. The Annotation Ingpdastbased on triggers and functions.

Finally, the Annotation History relies on mirrotbtas and triggers. The embedded part in the
Chado database could be enough for the CC to wortsamwn but in order to take advantage

of its features and optimize database access t dglications may have to call some SQL

functions of the CC. In the following parts, we mdescribe how each module works, what
their specificities are and how they are inter-amtad with client software.

a) Classic Chado access.

Chado Database Client Software
PostgreSQL protocol (GBrowse, Apollo,

Artemis,...)

A

b) Controlled Chado access.

PosgreSQL database

Chado Chado Client Software
Database |, PostgreSQL Controller | PostgreSQL (GBrowse, Apollo,
procedures, protocol Artemis,...)
triggersand
| rules
I ————. a
Legend :
Model View Controller

Figure 1. Model-View-Controller Architecture.

Access Restriction Module

Chado Schema Modifications

To manage users’ and groups’ access right, somefipatibns in Chado schema and
additional tables are required (Figure 2). The Asdeestriction module protects the “feature”
table by renaming it into “feature_data” and renmgvaccess rights to that table from non-
admin users. In order to let client software acdeasure data, a “feature” view is created
with associated rules allowing SELECT, INSERT, UPIEAand DELETE SQL queries. This
view lets the user only see the features he/shallasved to see. The “annotator” table
contains user account and group data. This tableatso be used to store password but
usually, as people use more than one Chado dataistaace, another separate database is

employed to store passwords. The table “user_gto is used to store the relationship
between users and group.(which users belong to which groups). “feature_sstés the
table that stores all access rights by associatinger account or a group, an access level to a
feature. “feature_access_max_temp” is a tempowdie tthat is created and valid during a
user session only and removed when the user disctsirit only contains the highest access
rights of current user on each available featufeatlire_access _max” is a view used to
retrieve the highest access right of a user oratuffe by crossing “feature_access” table with
user's groups. This view is overridden by a tempondew at runtime for optimization
purpose. The persistent version of the view can mge the temporary table
“feature_access_max_temp” while the overriding terapy optimized version can and does.
Finally, the “version” table is a table added bg tbC to keep track of versions of installed
modules (in case of update or compatibility chegkin

user_group_link annotator
group_id integer [PK, FK] < id integer [PK]
user_id integer [PK, FK] < name name [U]
salt bytea
password character
time_registration timestamp
time_last_login timestamp
feature_access time_last_try timestamp
failed_login_count smallint
feature_id integer [PK, FK] flags integer
annotator_id integer [PK, FK] K role text
access_level integer comment text
comment text
feature_data
feature_id integer [PK]
feature_access _max dbxref_id integer [FK]
organism_id integer [U, FK]
SELECT fmat.* name varchar(255)
FROM feature_access_max_temp fmat uniquename text U]
residues text
seglen integer
/ md5checksum char(32)
type_id integer [U, FK]
feature_access _max_temp / is_analysis boolean
¥ is_obsolete boolean
feature_id integer [FK] timeaccessioned timestamp
access_level integer timelastmodified timestamp
Initialized with:
SELECT fa.feature_id,
max(fa.access_level) feature
AS access_level
FROM feature_access fa SELECT f*
WHERE annotator_id IN FROM feature_data f
(SELECT * INNER JOIN feature_access_max fa
FROM get_access_list()) USING (feature_id)
GROUP BY feature_id,; WHERE fa.access_level >= 1
+ RULEs for INSERT, UPDATE and DELETE
version
name varchar(255)[PK] .
major_version integer Legend
minor_version integer
build integer Table
note text

Temporary table

View

Figure 2. Chado schema modifications for access restriction.

Account Management Considerations

When a user fetches features, the “feature” view wmly return allowed features of
“feature_data” table. For each feature of the télelature data”, only the highest access right
coming either from the user account or his/her grall be taken in account. To identify the
user, the Access Restriction module uses Postgregiahial variable “session_user”. That's
the reason why, in order to access or create Estusers must also have a PostgreSQL
account sharing the same login as the one used hret“annotator” table.

The annotator table could be seen as redundang sisers must also have a PostgreSQL
account but its purpose is to provide another viiay the PostgreSQL server way to manage
users. Therefore, some administrative informatiooud users and groups can be stored (roles,
administrator comments) and accounts can be ddablecked per database (for instance by
the login interface after several failures to preyeassword attacks).

Optimizations and Behaviour

As the “feature_data” table can contain a large lmemof rows that can be multiplied by the

number of user and/or group-specific access ritjte, “feature_access” table can rapidly
become huge and slow down access to features. fimip@ feature access, a temporary table
“feature_access_max_temp” that only contains tlghdst access right of current user is
created dynamically for each session. To perfoisitdsk, the procedure “init_access” should
be called at the beginning of each PostgreSQL @egkiefore any transaction). As some
client software may not perform that task, it iscaoatically performed by the Access

Restriction module during the first query interagtiwith the “feature” view. Therefore, this

first single composite query may be really sloweant a call to “init_access” and then,

performing the same query. See Figure 3 for details

To call “init_access()”, the source code of Arterhass to be modified. By default, Artemis
uses “com.ibatis.common.jdbc.SimpleDataSource”sclakich does not provide a way to
initialize each connection of its pool and getsllyealow with the CC. Instead of using
“com.ibatis.common.jdbc.SimpleDataSource” class in DatabaseDocument.java,
“org.apache.commons.dbcp.BasicDataSource” class used. Then, in config file

“chado_iBatis_config.xml”, “init_access()” can balled as the validation procedure:
<property name="validationQuery" value="SELECT init _access();"/>

For Apollo, a new data adapter called “PostgresG8adtrollerAdapter.java” is provided
and should be included when compiling Apollo. Thidapter should be used in “chado-

adapter.xml” config file:
<chado-adapter>

'~ <chadodb>
) <adapter>apollo.dataadapter.chado.jdbc.Post gresChadoAdapter</adapter>

~ <Ichadodb>
</chado-adapter>

Please note that Apollo was not the annotatioroedie used for functional annotation and it
has not been exhaustively tested with the CC.

In the case of Web applications such as GBrows# page loaded on user side means a new
database connection is opened. Running “init_a¢fesach time a page is loaded can
become quite annoying. Moreover, GBrowse uses oné/database login account and does
not allow user to connect to the database using #teount. Therefore, in order to have a
more comfortable browsing experience, another dpéition way has been employed.
GBrowse is configured to use a database accouhtfulitread access to all features but each
guery to the feature table includes an accessatsitr sub-query. This has been achieved by
patching the Chado adapter Perl library (Bio::DB®RA&Chado). “Chado.pm” and
“Segment.pm” has been modified in order to incladeestriction sub-query in each query
made on feature_data table if access restricti@madbled. Otherwise, the Chado adapter just

behaves like usual. The restriction sub-query @®s$eature _access” and “feature_data”
tables using an administrator account and involses id and user group id found when the
user logged in using the login interface added Brd@wse (kept in session object). This
approach slows down each query but the Web pagé ledd faster than calling
“Init_access()” each time a page is loaded.

The case of “gmod_bulk load” script raises anotksue. This script uses “COPY” SQL
gueries which can not be used on views, even witdsr Therefore, the feature view prevents
the script from loading data into the database.avoid this issue, the Access Restriction
compatibility mode (c.f. “Compatibility Mode” belowcan be used but when activated, users
can not access to the “feature” table (which res@motected). That's why a modified
version of “gmod_bulk_load” script which works ohet “feature_data” table (instead of
“feature” view) is provided.

Client is authenticated and
access rights are not
optimized yet

rl

b
N
\‘

v

S1: Client performs an SQL query

Q1: Query is
“SELECT
init_access()"?

Q2: SQL query
involving feature
table?

S2: Perform SQL query using default
(slow) views ‘feature’ and
‘feature_access_max’

S3: Create temporary table
feature_access_max_temp

Q3: Client is
admin?

No

A 4

S5: Initialize ‘feature_access_max_temp’ table with
current client highest access level

S4: Create a temporary ‘feature’

view with rules to override default v
view that just performs queries S6: Override ‘feature_access_max’ view with a
directly on ‘feature_data’ table temporary view that just performs queries directly on

‘feature_access_max_temp’ table

\ 4

S7: Override ‘feature’ view with a temporary view with
rules that uses ‘feature_access_max’ temporary view to
fetch client access rights and limit access to allowed
features

Access rights are optimized
for current session.
If client was performing a
query, return results.

Figure 3: State diagram of session access rights optimizatio
At state S1, if the client software does not supploe Access Restriction module, it may executerigaeon

feature view. This will lead to state S2 through @&) and Q2 (yes). Otherwise, if the client softsves “Access
Restriction module aware”, it will call init_acc€gfirst and go to state S2 through Q1 (yes).

In the case of an administrator account which blisaEcess to feature_data table, no restrictioreeded and it
leads from state S3 to state S4 through Q3 (yestttly. Otherwise, several optimization states (8,and S7)
are done.

Compatibility Mode

As the Access Restriction module replace “featusdile with a view, some scripts or
programs may not work properly because they exjieature” relation to be a table and not a
view. In order to address that issue, a “Compdtybillode” can be enabled and disabled. The
“Compatibility Mode” renames the “feature” view ant'feature_view”, the “feature_data”
table into “feature” table and creates a “featuegatiview that transfers queries to “feature”
table (Figure 4). In this way, the scripts or pags requiring the relation “feature” to be a
table can work again. The counter-part of thishat tonly the administrator account (which
owns the “feature” table) can access to this tedoted use those programs. While the
compatibility mode is turned on, regular annotatmaa not access to the feature table; they
must use the “feature_view” view instead. The cotbgdy Mode has not been designed to
be turned on all the time but just for temporarynadstration tasks such as tracks loading
using the “COPY” SQL query for instance.

To enable the compatibility mode, the following SQuery should be used:
SELECT set_ar_compatibility(TRUE);

To disable the compatibility mode and put back Alteess Restriction module in its initial

state, the following SQL query should be used:
SELECT set_ar_compatibility(FALSE);

Regular Mode

Compatibility Mode

feature_data feature

feature_id integer [PK] SELECT f*

dbxref_id integer [FK] FROM feature_data f

organism_id integer [U, FK] INNER JOIN feature_access_max fa
name varchar(255) USING (feature_id)

uniguename text [U] WHERE fa.access_level >= 1

residues text

seglen integer + RULEs for INSERT, UPDATE and DELETE
md5checksum char(32)

type_id integer [U, FK]

is_analysis boolean

is_obsolete boolean

timeaccessioned timestamp

timelastmodified timestamp

feature_view
feature SELECT f*
FROM feature_data f
feature_id integer [PK] INNER JOIN feature_access_max fa
dbxref_id integer [FK] USING (feature_id)
organism_id integer [U, FK] WHERE fa.access_level >= 1
name varchar(255)
uniquename text U] + RULEs for INSERT, UPDATE and DELETE
residues text
seglen integer
md5checksum char(32)
type_id integer [U, FK] feature_data
is_analysis boolean
is_obsolete boolean SELECT f.* FROM feature f
timeaccessioned timestamp
timelastmodified timestamp + RULEs for INSERT, UPDATE and DELETE
Legend :
Table Restricted to administrator account
View

Figure 4. Chado Controller schema changes between regulae amdi Access Restriction Compatibility Mode.

Access level

By default, newly created features inherits accegbt from their parent (found using
“srcfeature_id” of “featureloc” table, see installé¢assign_default_rights()” PostgreSQL
procedure in your Chado database for details).cDfse, the originator of the feature also has
full access to that feature. If a feature has reess set for a specified user (or his/her groups)
then the feature won't be accessible to that d$er.policy of the Access Restriction module
is to forbid access to features by default untibacess right has been explicitly given.

Four Feature access levels exist:
0 or no level set: no access. The user can't sefedture;

1: read only. The user can only view the featurtechn not modify it;
2: read and edit the feature. The user can viewnaodify the feature;
3: read, edit and remove the feature. The usealtasnplete control over the feature.

Note: to be able to edit a feature, the user misst laave the binary flag 0b000001000 (i.e.
ANNOTATOR_FLAG_WRITE_ACCESS) of his annotator aconbuor group set (c.f.
“annotator” table of Figure 2). That flag also alkthe user to add new features to the Chado
database.

Authentication

As mentioned earlier, Chado annotator accounts rhage a corresponding PostgreSQL
account (cf. Account Management Considerationsvéi@r, the Access Restriction module
cannot use PostgreSQL to authenticate the annstafoa Chado instance from GBrowse.
Therefore, passwords must be stored in a datalbaseAccess Restriction module can either
store passwords in each Chado instance or use redshmassword database to help
synchronizing password changes. For obvious sgcrgédsons, passwords are not stored in
clear text: password MD5 hashes (with random sadt)stored instead.

GBrowse 1.x does not include login facilities. rder to enable users to login on GBrowse
1.7x interface, additional modules and patchessBrowse code are provided. The module to
use to authenticate annotators can be specifi@Bmowse configuration file allowing custom
authentication modules to be written. As GBrows& ancludes built-in login facilities, an
authentication plug-in has been written.

Annotation Inspector

Modularity

The Annotation Inspector is a set of SQL proceddines are either triggered by events or
called by user programs. The Annotation Inspects lbeen written in a modular way: each
part of the Inspector can be installed or not andbked or disabled at runtime (cf.
“config_annotation_inspector.tmpl” file generatedridg the installation process in the
installation directory). For instance, if you dotnweish to install the transposable element
management part, add “INSTALL_AUTO_TE_RELATIONSHI®=o the Chado Controller
installation command line. At runtime, each triggervalidation procedure can be disabled
manually or all triggers can be disabled usingAh@otation Inspector Compatibility Mode
made for this purpose.

Validation procedures

Annotation Inspector validation procedures perfaamious annotation checks and automate
some tasks to build a feature annotation consigtegport. These procedures are called by
(modified) annotation software like Apollo or Artestwhen the user wants to commit the

changes but they can also be called manually uem&QL query:
SELECT validate_annotations(<transaction group iden tifier>, <fore commit status>);

The transaction group identifier is the numeriaunealhat regroups modifications made by the
annotator in “*_audit” tables (cfAnnotation History section). When the annotationrkvo
starts, the procedure “start new_transaction_gjdup(called and returns the transaction

group identifier that can be used later on to \médthe annotation work done. If
“start_new_transaction_group()” is not called, eatrPostgreSQL session identifier is used.
Each transaction group identifier is unique anttfyrpositive (session identifier) or negative
(identifier from start new_transaction_group() m@dare). If O-value is used as the
transaction group identifier, the validation praxds performed on the entire database
features.

The “force commit status” parameter is a boolednea/Vhen set to false, only a report is
provided and no data changes are performed. lfosetue, some feature properties may be
automatically added to annotated features to rertiiedannotator some problems remain to
be fixed. For instance, if a stop codon is foundida frame, the feature property
“stop_in_frame” is added. If several stop codors faund, then “multiple_stop_in_frame”
feature property is added. If no stop codon is ébunside frame, none of these properties are
added.

Two columns are returned by the “validate_annotasijo.)” procedure. The first one is the
validation report (human readable text) and th@s@mne is an integer reflecting validated
features. If that number is positive or null, nooerwas encountered and if that number is
negative, the absolute value is the number of g @acountered.

Validation procedures can also be enabled or disabking the column “enabled” in the
“annotation_inspector_procedures” table (cf. FigpixeThis table can also be used to add new
custom validation procedures. Writing new validatiprocedure requires knowledge in
PostgreSQL procedure language and a good undergganichow Chado data are stored and
how the Annotation History module works. A good waystart writing a new validation
procedure would be to copy and modify an existing.o

Basically, a validation procedure retrieves thduess to check using “*_audit” tables. Then,
it performs its validation process and chooseseeitt just report errors or also add properties
to record encountered errors. To be called by traidate annotations(...)” procedure, a
validation procedure must appear in “annotatiompeéator _procedures” table (cf. Figure 5)
with enabled column set to true. Annotation procediare called in priority order (priority
column), the highest priority value being calledtfi

annotation_inspector_procedures version

name varchar(255) [PK] name varchar(255)[PK]
priority integer major_version integer

enabled boolean minor_version integer

is_trigger boolean build integer

description text note text

Figure 5. Tables added to Chado by the Annotation Inspectmtuie.

Beside validation procedures and triggers, the Aattian Inspector also comes with various
helper functions wich complement Chado API. The udoentation of each function is
available before the code of each function in ‘aisannotation_inspector.tmpl”. Provided
functions are:

e insert_or_update_feature_property;

set_feature_cvterm;
retrieve_polypeptide;
retrieve_repeat_region;
retrieve_annotated_feature;

retrieve_te;
retrieve_gene_related_features;
retrieve_repeat_region_related_features;
retrieve_related_features.

The feature annotation consistency report is dygulan a Java dialog box in Artemis (c.f.

DatabaseDocument.java) or Apollo (c.f. PostgresG@adtrollerAdapter.java) at commit
time.

Annotation History

The Annotation History module derivates from Chadaudit module (c.f.
http://gmod.org/wiki/Chado_Audit_ModuleLike the Chado audit module, the Annotation
History module creates an “audit” clone of eachsemg table but it brings several
differences. First, Chado Audit module adds a rowhe corresponding audit table when the
original row is being changed. Therefore, the gpomding audit table only contains previous
versions of modified rows. This behaviour savesegdaut was not easy to query to retrieve
the history and current version of a feature, egfigovhen several tables need to be joined
(some identifier may be missing in audit tableg)afls one good reason why the Annotation
History module stores duplicates of current dataanh audit table. It's also a way to know
when and in which order rows are inserted.
Then, the original audit module did not include exaV useful information such as the user
who did the changes and in which order changesevitexde. Indeed, the transaction date
was recorded but when using PostgreSQL transabtawks, several transactions could share
the exact same date.g the commit date)! With the Annotation History mdeuthis
information is added. The added “transaction_useltimn records the effective PostgreSQL
user account that did the transaction (c.f.
http://www.postgresql.org/docs/8.4/interactive/dgta-character. ntmIi#DATATYPE-
CHARACTER-SPECIAL-TABLEfor column type details). The “transaction_grougionn
tells which transactions were done together andtthasaction_id” column gives the order of
transactions. The transaction type codes were @ubh(existing code were upper cased and
lower case “i” was added):
* Type 'iI' corresponds to rows already there whenAthieotation History module was
installed;
e Type 'I' means the audit row contains the data Wwh@as been inserted using
“INSERT” query;
« Type 'U means the audit row contains the data hwhias been updated using
‘“UPDATE” query;
« Type 'D' means the audit row contains the data hwvtias been deleted using
“DELETE” query.

*_audit version

* * name varchar(255)[PK]
transaction_date timestamp major_version integer
transaction_type char(1) minor_version integer
transaction_user name build integer
transaction_group integer note text
transaction_id integer

Figure 6. Tables added to Chado by the Annotation History uted

The annotation history of a feature can be dismglaygh GBrowse 1.7x using the CGI script
“gbrowse_history” provided in the CC installatioragkage. This script derivates from
“gbrowse_details” script and can be customizedeeithy modifying the source code or
changing the content of the arrays “@gene_propetite display” (for genes) and
“@default_properties_to_display” (other types dittee).

Contacts

valentin.quignon@cirad.fr
stephanie.sidibe-bocs@cirad.fr

