

Chado Controller
Administrator

Manual

V1.0.0

2012-04-02

The Chado Controller package and all associated files are copyright (c) 2008 CIRAD,

Montpellier, France.

The Chado Controller package is distributed under the Artistic License 2.0.

Preface

This administrator manual targets system administrators and describes how to install,

configure and manage the Chado Controller package.

Table of content

Chado Controller Administrator Manual ... 1
Preface .. 3
Table of content .. 4
Install, update and uninstall .. 5
Users management ... 5

Access management ... 5
Annotators Management interface ... 5

Users Management interface .. 6
Groups Management .. 6
Setting user of group access rights ... 7

Features Access Management .. 7
Annotation Inspector .. 8

Main validation procedure.. 8

Other validation procedures ... 8
Transaction groups ... 8

Troubleshooting ... 9
Access Restriction .. 9

Annotation Inspector .. 9
No solution found ... 10

Contacts .. 10

Install, update and uninstall

Get the installer package from http://www.gnpannot.org/content/chado-controller

Unzip it somewhere in en temporary directory on your server and follow the instruction from

the file “INSTALL”.

Users management

When you install the Chado Controller, you have 2 options for the user database. You can

either store user acocunts in your Chado database or store them in a separate database. If you

only run one instance of Chado, you may prefer the first solution. If you’re running several

instances, then you may prefer store user account data in a separate database common to all

your Chado instances. This enables synchronizing user passwords across Chado instances.

When using a common user database, only user login and password are common: access

rights and groups are Chado instance-specific. Also note that the login name used for the

Chado Controller must correspond to a PostgreSQL user name as the Chado Controller uses

PostgreSQL built-in functions to know who the acting user is. However, there is no way for

the Chado Controller system to use PostgreSQL functions to authenticate a user, therefore the

Chado Controller has to store passwords (encrypted hashes with pepper and salt) in a table in

order to authenticate users from GBrowse for instance. This means that a user password may

be different between a PostgreSQL access and a Chado Controller access. The provided user

interface and administrator interface are supposed to handle password synchronization

between those two instances of password. If a user PostgreSQL password is changed outside

the Chado Controller interfaces, then the user will also have to change manually his/her

Chado Controller account password if he/she want them to be identical.

Note: Chado Controller login and password should follow the same rules PosgreSQL

accounts have (32 characters each).

Access management

Only Chado feature table is protected by the Chado Controller. Feature access can be

managed at a feature level or a scaffold level or using a query to return related feature

identifier. Access rights can be granted using groups or users. If the access right of a user to a

given feature can come from both user and group access right, only the highest access right is

kept. For instance, if the user U has read access to the feature F but U also belongs to group G

and G has write access to F, then U has write access to F.

Note: all feature access rights are kept in the feature_access table. This table can quickly store

a lot of entries and it is recommended to avoid assigning access rights to users be rather add

users to groups and assign access right to those groups.

Annotators Management interface

The Annotators Management interface can be access through the web from the url

<YOUR_GBROWSE_BASE_URL>/cgi-bin/annotators_management.

Once logged in, you will see the main menu with 4 items:

 Users Management

 Groups Management

http://www.gnpannot.org/content/chado-controller

 Features Access Management

 Check user accounts

Users Management interface

This interface allows you to add, modify or remove users. The “Role” and “Comments” fields

are here for administrative purpose only (it helps you remember why you created an account)

and are not used by the system.

Available user flags and descriptions:

 Disabled: when set, the user can not log in to the Chado Controller.

 Locked: this flag is automatically set when too many bad login attempts are made

(invalid passwords) to protect the system against password brute-force attack from the

GBrowse interface. The attacked user account is locked for a certain amount of time

and the lock is automatically released after that delay and the user can login again. The

maximum number of bad attempts a user can made is set by

$ACCOUNT_MAX_FAILURE (default: 5) in the Access.pm perl library (somewhere

in Bio/Graphics/Browser/) and the amount of time the account is locked is set in the

same file by $ACCOUNT_LOCK_DELAY (default: 300sec).

 No Password: when set, the user doesn’t need to enter a password to login. Only a

valid login name is required.

 Password Locked: when set, the user can not change his/her password from the

GBrowse login interface.

 Password to Change: usually set for newly created users. When set, a message will be

displayed on the login interface (once logged in) reminding the user he/she has to

change his/her password.

 Write Access: when not set, a user can not modify a feature even if he/she has write

access rights on that feature. It an easy way to have several users in a same (write)

group and allow or deny write access to some specific users of that group.

 Gene Editor Access: if set, a link like “Edit with Artemis” can be displayed in

GBrowse feature details popup. This can be used in GBrowse config file.

[TOOLTIPS]

default = sub {

...

 my $use_gene_editor = $args->{gene_editor};

...

 if (($class =~ /manual_curation/) && $use_gene_editor) {

 $mess .= "Edit with artemis
\n";

 }

...

 Admin: if set, the user is an administrator which means he/she has access to the

Annotators Management interface and also have write access to any feature in the

database (faster direct access to feature without access checking).

Groups Management

Group flags are the following:

 Disabled: access right from this group won’t be taken in account when computing user

access rights even if the user belong to that group.

 Write Access: users of that group are allowed to modify features.

 Gene Editor: users of that group will see the link “Edit with Artemis” (see

corresponding flag in Users Management section for details)

 Admin: users of that group have administrator access (see corresponding flag in Users

Management section for details).

Setting user of group access rights

On both User Management and Group Management interfaces, you can set access right to

features. Features are grouped by scaffold. For each scaffold, when you select:

 Keep current: no access right is changed for that scaffold;

 Use default: all access right specific to that scaffold for current user or group will be

removed and the default behaviour will be used. It’s a way to remove specific right

from the database and make the feature_access table lighter.

 Forbiden: the user or group won’t be able to see (and edit) the features of selected

scaffold;

 Read: user or group can only view the features of the scaffold and not edit them;

 Write: the user or group can view and edit the features of the scaffold.

Features Access Management

This interface allows the administrator to set feature access rights either using default feature

selection (ie. by scaffolds) or using a custom query that returns the related feature_id. The

default query that selects all the features of scaffolds ('contig') is the following:

SELECT f.feature_id FROM feature_data f, cvterm cvt, featureloc fl WHERE (f.feature_id =

fl.srcfeature_id) AND (f.type_id = cvt.cvterm_id) AND (cvt.name = 'contig')

If you would like to select all the features of a database, use the following query:

SELECT f.feature_id FROM feature_data f

If you would like to change the access right of features of a specific track which has the

accession “<TRACK_NAME>”:

SELECT f.feature_id FROM feature_data f JOIN feature_dbxref fd ON fd.feature_id =

f.feature_id JOIN dbxref d ON fd.dbxref_id = d.dbxref_id WHERE d.accession =

‘<TRACK_NAME>’

If you would like to change the access rights of features of a given type_id <TYPE_ID>:

SELECT f.feature_id FROM feature_data f WHERE f.type_id = <TYPE_ID>

If you have a list of feature ID that you’d like to protect, just enter the ID separated by comas:

123, 456, 987, 1234

In any of these cases, just enter the subquery in the text area “Features selection query:” and

hit the button “Update” below the tex area. Once some example of selected features are

displayed, you can either just edit a single feature of the list using its “Edit” button or all the

selected features (even the one that are not displayed because of the “LIMIT” clause in the

SQL query) using the “Edit rights of selected features” button.

The “Auto-set access rights for new features” button can be use to assign to new features

(with no access right set) the same access rights the source feature they are located on has. For

instance, a new feature added to an existing scaffold will get the same access rights than the

scaffold. The Chado Controller uses the table featureloc to find what is the “source” feature of

new features.

Finally “Set public read access rights for non-contig features” button can be used to allow

everybody to see features that are not directly linked to a scaffold (contig). For instance, a

feature corresponding to a BLAST match won’t be localized on a scaffold and using “Auto-

set access rights for new features” won’t have any effect but “Set public read access rights for

non-contig features” will.

Annotation Inspector

Unfortunately, no web interface has been developed yet to handle Annotation Inspector tasks.

However, you can use the Annotation Inspector using PostgreSQL queries.

Main validation procedure

The Annotation Inspector can be called to inspect a specific transaction group

“<transaction_group>” using the procedure “validate_annotations”.

Example:

SELECT * FROM validate_annotations(<transaction_group>, FALSE);

The second parameter called “force_validation“ is a boolean value (set to FALSE in the

example above). It is used to select the way the procedure should be run. When set to FALSE,

The “validate_annotations” procedure will just generate a report with errors and warning met.

When set to TRUE, the “validate_annotations” will still reports error but will also make some

changes in the database by adding some properties or CV terms to annotated features

reporting the encountered problems. For instance, if a stop codon is met inside a coding

sequence, the feature CV term “stop_in_frame” (CV “structural_completeness”) will be added

to the polypeptide. When encountered problems are fixed, such added properties and CV

terms are automatically removed.

Other validation procedures

“validate_annotations” procedure calls all the procedures that are enabled in the

“annotation_inspector_procedures” table (added to Chado schema) in their priority order

(negative values are lower priorities, positive values are higher priorities). Each of these

procedures can be called the same way “validate_annotations” is called. They return a status

string reporting if errors were found.

Each of these functions can also be enabled or disabled at will by changing the corresponding

“enabled” boolean value of the “annotation_inspector_procedures” table. For instance, to

disable the “check_gene_structure” procedure, execute the following query:

UPDATE annotation_inspector_procedures SET enabled = FALSE WHERE name =

‘check_gene_structure’;

New validation procedure can also be added: please refer to the Chado Controller Technical

Documentation for details on how to create such procedures.

Transaction groups

You can find out what transaction_group you are looking for by querying the table that have

been modified (feature, featureprop, featureloc, etc.) using a query similar to this one:

SELECT transaction_group FROM feature_audit WHERE transaction_user = ‘user_name’

AND transaction_date > ‘2012-09-01 17:00:00’ AND transaction_date < ‘2012-09-01

18:00:00’ ORDER BY transaction_date DESC;

SELECT transaction_group FROM featureprop_audit WHERE transaction_user =

‘other_user_name’ AND transaction_date > ‘2012-09-01’ AND transaction_date < ‘2012-09-

02’ ORDER BY transaction_date ASC LIMIT 20;

If you would like to check all the features of the manual annotation track without taking in

account any transaction group, you can use the value “0” as transaction group. This will tell

the Annotation Inspector to process all the features of the manual annotation track.

Note: if you have a lot of data, checking the whole manual annotation track may take a lot of

time (several hours and maybe even days!).

Troubleshooting

Access Restriction

Compatibility

In some rare cases, you may use software that requires the feature table to exist. Since the

Chado Controller Access Restriction module replace this table with a view, PostgreSQL

queries like “COPY” will fail. In these cases, you can either tell your program to use the

feature_data table instead or put the Access Restriction in compatibility mode using the script

provided in the installation package:

cc_compatibility.pl -h localhost -p 5432 -d chado -U postgres -W your_password -on

Important: don’t forget to switch compatibility mode off once you are done otherwise, other

users will experiment access issues!

cc_compatibility.pl -h localhost -p 5432 -d chado -U postgres -W your_password -off

For more details on how to use cc_compatibility.pl, just use the command line

“cc_compatibility.pl –help”.

Account creation/access to tables or procedure issues

The administration interface has the menu item “Check user accounts”. This menu item

performs several checks on the database and can fix many issues. You can use it any time you

want to check if it can fix your issues.

Password synchronization

As described in the “user management” section, user passwords have to be synchronized

between Chado Controller access and PostgreSQL. If they are not synchronized, you will

have to synchronize them manually either by changing the Chado Controller password form

the administrator interface or by changing the PostgreSQL user account password as

annotators may be confused by having two different passwords.

Annotation Inspector

If an annotation validation procedure raises some (recurrent) issues, it can be disabled by

changing is “enabled” value in the table annotation_inspector_procedures. For instance, if you

would like to disable the “check_introns” procedure, do:

UPDATE annotation_inspector_procedures SET enabled = FALSE WHERE name =

‘check_introns’;

To reactivate it:

UPDATE annotation_inspector_procedures SET enabled = TRUE WHERE name =

‘check_introns’;

No solution found

If you couldn’t find any solution to your problem, you can use the e-mail address provided in

the “Contact” section below.

Contacts

valentin.guignon@cirad.fr

stephanie.sidibe-bocs@cirad.fr

mailto:valentin.guignon@cirad.fr
mailto:stephanie.sidibe-bocs@cirad.fr

